Quadrupole lattice resonances in plasmonic crystal excited by cylindrical vector beams
نویسندگان
چکیده
We report a scheme to exploit low radiative loss plasmonic resonance by combining a dark (subradiant) mode and a lattice resonance. We theoretically demonstrate that such dark-mode lattice resonances in periodic arrays of nanodisks or plasmonic crystals can be excited by vertically incident light beams. We investigate the excitation of lattice resonances in a finite sized, square-lattice plasmonic crystal by two types of cylindrical vector beams and a linearly polarized Gaussian beam. Quadrupole lattice resonances are excited by all three beams, and the largest peak intensity is obtained by using a specific type of cylindrical vector beam. Because of their lower radiative losses with many hotspots, the quadrupole lattice resonances in plasmonic crystal may pave the way for photonic research and applications that require strong light-matter interactions.
منابع مشابه
Dark modes and Fano resonances in plasmonic clusters excited by cylindrical vector beams.
Control of the polarization distribution of light allows tailoring the electromagnetic response of plasmonic particles. By rigorously extending the generalized multiparticle Mie theory, we show that focused cylindrical vector beams (CVB) can be used to efficiently excite dark plasmon modes in nanoparticle clusters. In addition to the small radiative damping and large field enhancement associate...
متن کاملPlasmonic oligomers in cylindrical vector light beams
We investigate the excitation as well as propagation of magnetic modes in plasmonic nanostructures. Such structures are particularly suited for excitation with cylindrical vector beams. We study magneto-inductive coupling between adjacent nanostructures. We utilize high-resolution lithographic techniques for the preparation of complex nanostructures consisting of gold as well as aluminium. Thes...
متن کاملShaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas.
We demonstrate that the emission of light by fluorescent molecules in the proximity of periodic arrays of nanoantennas or plasmonic crystals can be strongly modified when the arrays are covered by a dielectric film. The coupling between localized surface plasmon resonances and photonic states leads to surface modes which increase the density of optical states and improve light extraction. Excit...
متن کاملPlasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka
This study theoretically investigates Fano resonances and dips of an Au-SiO2-Au nanomatryoshka that is excited by a nearby electric dipole. An analytical solution of dyadic Green's functions is used to analyze the radiative and nonradiative power spectra of a radial dipole in the proximity of a nanomatryoshka. From these spectra, the plasmon modes and Fano resonances that accompany the Fano dip...
متن کاملHybrid phase-change plasmonic crystals for active tuning of lattice resonances.
Tunable lattice resonances are demonstrated in a hybrid plasmonic crystal incorporating the phase-change material Ge2Sb2Te5 (GST) as a 20-nm-thick layer sandwiched between a gold nanodisk array and a quartz substrate. Non-volatile tuning of lattice resonances over a range Δλ of about 500 nm (1.89 µm to 2.27 µm) is achieved experimentally via intermediate phase states of the GST layer. This work...
متن کامل